Het belang van goede communicatie tussen het datateam en de medewerkers?
Starten met datagedreven werken
Lees onze nieuwsbrief van mei hieronder!
Introductie:
“Goede communicatie is een van de belangrijkste zaken binnen een goed functionerende organisatie. Echter blijkt in de praktijk dit nog wel eens lastig te zijn. Een goed voorbeeld is de ruis op de lijn tussen het datateam en een medewerker die vraagt of er een wijziging doorgevoerd kan worden op bijvoorbeeld een dashboard.
Medewerkers realiseren zich vaak niet welke impact hun verzoeken hebben op het datamodel. Het gevolg? Verkeerde verwachtingen, in bijvoorbeeld tijd. Zo kan een verzoek dat simpel lijkt, zoals even een nieuwe kolom toevoegen of even wat nieuwe data ophalen, in de praktijk een stuk complexer zijn. De oorzaak? Gebrek aan datageletterdheid bij de betrokken medewerkers.
Wat ik dan ook niet snap: Waarom sturen organisaties – die veelal datagedreven in hun visie hebben staan – niet wat meer op het verhogen van de datageletterdheid van medewerkers? – aldus Fleur Bake, Data intelligence consultant bij Techspread.
Wanneer een organisatie streeft naar datagedreven werken, is het verhogen van de datageletterdheid onder het personeel een belangrijke eerste stap. Op deze manier wordt er gezorgd voor draagvlak en zorg je voor een betere communicatie tussen het datateam en de medewerkers die vragen stellen om bepaalde zaken aan te passen.
Een goed praktisch voorbeeld wat binnen organisaties veel gebeurd is dat een medewerker vraagt om een aanpassing in de dataset: bijvoorbeeld het toevoegen van een extra datapunt. Een vraag die simpel lijkt, maar welke in de praktijk zeer complex kan zijn. Hieronder twee soortgelijke situaties waarbij het niveau van impact totaal verschillend is.
| Oplossing: In deze situatie is het systeem en de tabel al ontsloten. Oftewel de adresgegevens van de klant zijn bekend en staan in de tabel. Je hoeft enkel een kolom aan de tabel toe te voegen voor het e-mailadres.
| Dit is relatief eenvoudig te realiseren
| Oplossing: In deze situatie moet een nieuw systeem ontsloten worden, waaruit de hoeveelheid uren per klant gehaald kan worden. Daarna moeten de relevante tabellen worden opgehaald, de benodigde berekeningen worden uitgevoerd, en de resultaten worden gevisualiseerd.
| Dit is relatief complex te realiseren
In beide gevallen kan men denken dat het een eenvoudige vraag is, echter hoeft dit niet altijd het geval te zijn. Het is daarom van groot belang om de basisprincipes van een datamodel goed te begrijpen. In deze nieuwsbrief gaan we hier dieper op in.
Wat is een data model?
Een datamodel is een essentiële tool voor het organiseren en beheren van data binnen een organisatie. Het helpt bij het ophalen van data uit verschillende databronnen en zorgt ervoor dat deze gegevens op een gestructureerde en efficiënte manier beschikbaar zijn voor analyse en rapportage.
Wanneer je als medewerker een vraag stelt aan je datateam, is het belangrijk om te weten welke databronnen wel en niet beschikbaar zijn (in principe kan elke databron worden ontsloten). Dit heeft namelijk invloed op de omvang en complexiteit van je vraag. In de basis mag er gehanteerd worden dat de datamodellen alleen de databronnen bevatten die momenteel nodig zijn voor de analyses en rapportages. Dit kun je navragen bij je datateam.
| Terugkomend op bovenstaand voorbeeld: als je een tabel met medewerkersgegevens hebt, is het ophalen van e-mailadressen eenvoudig. Maar als je ook urenstaten wilt inzien en die tabel is nog niet ontsloten, zal dat meer werk vergen.
Het proces van werken met een datamodel omvat meerdere stappen, deze zijn:
Hoe meer stappen er dus al (deels) zijn voltooid, hoe – over het algemeen – de vraag makkelijker te realiseren is.
Een datageletterd team zorgt voor effectievere communicatie met het datateam!
Om effectief te kunnen communiceren met het datateam, is de datageletterdheid van de medewerkers van groot belang. Het datateam heeft vaak specifieke en technische vragen over de datavraagstukken van de medewerkers. Deze vragen kunnen variëren van de frequentie waarmee data wordt vernieuwd tot hoe consistent data wordt verzameld.
Het is essentieel om deze vragen te begrijpen, zodat je met het datateam kunt meedenken en direct aan de voorkant goede keuzes kunt maken. Enkele voorbeelden van vragen vanuit het datateam zijn:
Door deze vragen goed te begrijpen en te beantwoorden, kunnen medewerkers beter samenwerken met het data team en ervoor zorgen dat de data effectief wordt gebruikt voor accurate en relevante inzichten, zowel aan de voor- als achterkant.
Hebben jullie moeite met dit onderwerp? Wij helpen je graag verder!
Zijn jullie als organisatie momenteel druk bezig met het zetten van (de eerste) stappen op het gebied van datagedreven werken, maar lopen jullie vast op het thema datageletterdheid? Wij helpen je graag verder!
We hebben niet alleen het thema datageletterdheid standaard opgenomen in onze trajecten, maar we hebben ook de afgelopen jaren hard gewerkt aan het ontwikkelen van ons eigen kennisplatform. Dit platform omvat diverse (op maat gemaakte) e-learnings, we verzorgen inhoudelijke presentaties en bieden fieldcoaching aan. Dit alles met als doel: één leerplatform voor jouw datakennis!
Wil je meer weten hoe je wij onze klanten datageletterd maken? Wil je dat we eens meekijken met jullie datamodel? Of ben je gewoon benieuwd naar de mogelijkheden op het gebied van data voor jullie organisatie? Neem dan snel contact op voor een ‘Bakkie pleur met Fleur’ ☕ Tot snel.